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ABSTRACT 

In this paper we characterize the Brauer-Severi scheme of a fixed degree 
(as defined by M. van den Bergh) of a finitely generated algebra over a 
commutative ring as the Proj of a graded commutative ring. 

Introduct ion  

The purpose of this paper  is to give an alternate characterization of the Brauer-  

$everi scheme of a finitely generated algebra as defined by M. van den Bergh in [9]. 

We do this by relating the Brauer-Severi scheme to the variety of representations 

of the algebra as defined below. In particular, for any finitely generated algebra 

A over a commutat ive ring R we show that  its Brauer-Severi scheme of degree n 

(n a positive integer) is isomorphic to Proj(QA,n) for some graded commutative 

R-algebra QA,n. The graded R-algebra QA,n is shown to be generated by a 

subset of semi-invariants of the diagonal GLn action on the fibered product of 

the scheme of representations of A of rank n with A n. This generalizes Corollary 

1.11 of [8] to finitely generated algebras over an arbitrary commutative ring. 

Here we will assume that  all rings will be associative rings with an identity 

element and all ring homomorphisms will preserve the identity elements. Let 

us choose a commutat ive base ring k. We will use the definition of a k-scheme 
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found in [4, w so that a k-scheme will be a functor from commutative k- 

Algebras to Sets with certain additional properties. For any positive integer m 

let Fm = k{Yl,..., Ym} be the free (noncommutative) k-algebra on m generators. 

If R is a commutative k-algebra, we will let RFm = R | Fro. 
We will also need to make use of the functor Mn from commutative k-Algebras 

to k-Algebras defined by letting M,~(S) be the ring of n x n matrices with entries 

in the commutative k-algebra S. If f :  S ~ T is a homomorphism of commutative 

k-algebras, then the homomorphism M~(f): Mn(S) ~ M,~(T) will be defined by 

applying f to each entry of each matrix in Mn(S). 

If Q is a graded k-algebra and h c Q is a homogeneous element, we will 

adopt the following notations: Qh will denote the localization of the ring Q at 

the multiplicatively closed subset {1, h, h2, . . .} and Q((h)) will denote the sub-k- 

algebra of Qh generated by the homogeneous elements of degree zero in Qh. 
Now fix a commutative k-algebra R and a positive integer n. For any finitely 

generated R-algebra we define the La t t i ce  R e p r e s e n t a t i o n  Scheme of  degree  

n to be LRep,~(A) = Spec(SA,n) where we use SA,n to denote the universal 

commutative R-algebra (uniquely determined up to isomorphism) given in [1]. 

If PA,n: A ~ Mn(SA,,~) is the corresponding R-algebra homomorphism, we have 

the following universa l  p roper ty :  

Given any R-algebra homomorphism r A ~ Mn(T) where T is a 
commutative R-algebra, there exists a un ique  R-algebra homomor- 

phism z]: SA,,~ ~ T such that r = Mn(~) o PA,n. 

We will call a pair (SA,n, PA,n) a universa l  pai r  for A of  degree  n. 

One consequence of this universal property is that for any commutative 

R-algebra T, there is a natural one-to-one correspondence between the set of 

R-algebra representations r A ~ Mn(T) and the set of T-valued points 

LRepn(A)(T ). For any R-algebra representation r A ~ Mn(T), let z]~ denote 

the T-valued point of LRep~(A) corresponding to r 

For any positive integer m, it follows from [1] that we can choose SRFm.,~ to 

be Sm,~ = R[xl~ll <_ i , j  < n, 1 _< g _< m], the polynomial ring in the mn 2 

commuting indeterminants _(t) and we can choose PRF,,~,n to be Pro,n: REin --~ ;L i , j  

Mn(Sm,,~) where Pm,n is determined by Pm,n(Yt) = r (~)1 for all 1 < g < m. i xi,j J 
Therefore, given a surjection T: RFm ~ A, the universal property of (Sin,n, pro,n) 
determines an embedding of LRep,~(A) in Xm,,~ = LRepn(RFm) as a closed 
subscheme. (Note that, as a scheme, Xm,,~ is just the affine scheme A "~2 .) 

Finally, we define a GLn-action on LRep~(A) as follows. For any commutative 
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R-algebra T and for any ~ C LRepn(A)(T ), "7 E GL~(T) let ~/~: SA,~ --+ T be the 

R-algebra homomorphism corresponding to the representation given by 

r A ~ M~(T) 

a, ~ ?(M,~(~) o pA,~(a)).y -1. 

Note that  if 7/, 7/' are T-points of LRep.(A) then 7/and ~ induce isomorphic T- 

lattice representations (i.e., the A-module structures induced on T n by r I and ~f 

are isomorphic) if and only if there exists an ~, C GL,~(T) such that r~ t = 7/"Y. 

1. T h e  B r a u e r - S e v e r i  s c h e m e  

Let R be a commutative k-algebra and let A be an R-algebra that  is not neces- 

sarily commutative. Let Bn(A, R) denote the set of all pairs (~, P)  such that P 

is a left A-module that is a finitely generated projective R-module of constant 

rank n and ~a: A --+ P is a surjective A-module homomorphism. We will call 

two pairs (~, P)  and (r Q) equ iva len t  if there exists an A-module isomorphism 

u: P -+ Q such that u o ~a = r In this case, we will write (~o, P)  ~ (r Q) to 

indicate the pairs are equivalent. 

Let Bsev~(A, R) denote the set of equivalence classes of ~ in B~(A, R). Then 

we let Bsev,~(A,R) denote the functor from commutative R-Algebras to Sets 

that takes the commutative R-algebra S to the set Bsev~(A | S ,S) .  The 

functor BSevn(A, R) naturally extends to a functor on R-schemes and is a closed 

subfunctor of the Grassmannian functor, hence is an R-scheme (see [9, Prop. 

2]). So we define the B r a u e r - S e v e r i  s c h e m e  o f  A ove r  R o f  d e g r e e  n 

to be the R-scheme Bsev~(A, R). Now we can use the following lemma of M. 

Van den Bergh's to relate the Brauer-Severi scheme of degree n to the R-lattice 

representation scheme of degree n. 

LEMMA 1.1 ([9, Lemma 3]): Let R be a commutative ring, T be a commutative 

k-algebra, and A an arbitrary R-algebra. Then the T-points of Bsevn( A , R )  are 

in one-to-one correspondence with equivalence classes of triples (r x, P)  where P 

is a finitely generated projective T-module of constant rank n, r A --~ EndT(P)  

is a k-algebra homomorphism such that r C_ T, and x E P is such that 

r  = P. 

In the above lemma, we say two triples ( r  and ( r  represent- 

ing T-points of Bsev,~(A, R) are equ iva len t  if there exists an A |  T-module 

isomorphism u: P -~ P '  such that u(x) = x ~. 
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Note: If T is a commutative k-algebra and the triple (r x, P) represents a T- 

point of Bsevn(A,R), then by Lemma 1.1 the representation r induces an R- 

algebra structure on T. Fhrthermore, if two triples represent the same T-point, 

then the two triples induce the same R-algebra structure on T. Therefore, once 

we specify a T-point of Bsev~(A, R) we have specified an R-algebra structure on 

T. 

For every commutative R-algebra T identify T ~ with A~(T). Then to every 

triple (r z, T n) that  represents a T-point of Bsevn(A, R) we can associate a T- 

point (~r z) of LRepn(A ) • Ann, where rlr is the unique homomorphism such 

that  r = Mn(r/~) o PA,n. 

More generally, assume T is a commutative R-algebra and the triple (r x, P) 

represents a T-point of Bsevn(A, R). Then there exists a faithfully flat com- 

mutative T-algebra T' such that P | T' is a free T'-module of rank n (for 

example, let T ~ = H m  T m  where the product ranges over the maximal ideals 

m of T). Choose a T-module isomorphism /3: P | T' -~ (T') '~ and let /~: 

EndT, (P | Tt) --~ M,~(T') be the corresponding T-algebra isomorphism. Since 

T r is faithfully fiat over T, we can identify P with a sub-T-module of P | T! 

and we can identify EndT(P) with its image in EndT,(P @T T') under the map 

r ~ r @ idT,. Then the triple (~ o r (T') n) represents a T'-point of 

Bsev~(A, R). So, given this choice of T ~ and/3, we can associate the Tr-point 

(rl~,~,/3(x)) of LRep~(A) • Ann to the triple ( r  

This association of a T'-point of LRep~(A) •  Ann to ( r  depends of 

course on the choice of T ~ and on the isomorphism/3. The question then arises, 

given a triple (r x, P) representing a T-point of Bsevn(A, R) how are the various 

representatives of this triple in LRep~ (A) x R Ann related? First, let us fix a 

faithfully fiat commutative T-algebra T ~ such that P | T ~ is a free T~-module 

of rank n. Let/3,/3~: P | Tt ~ ( T t )  n be T~-module isomorphisms. Then there 

exists a 7 C GL~(T') such that/3'  = -yo/3. Therefore, for any f E EndT,(PQTT')  

we get/3 '(f)  = "y/3(f)7 -1. So we Can define a GL,~ action on LRep,~(A) xnAnn by 

it: GL~ x R (LRePn (A) • R A~) ~ LRepn (A) x R Ann where, for any commutative 
R-algebra S we have 

p(S): GL (S) x (LRep (A)(S) x LRep (A)(S) x A (S) 

(,, z)) ( , ' ,  

LI~MMA 1.2: Let T be a commutative k-algebra and let (r r P) and (~, z, N) 

represent T-points of Bsevn(A, R). Let T' be a faithfully flat commutative T- 

algebra such that P | T' ~- (T') ~ ~ N | T' and let ill: P | T' -~ (T') ~, 
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132: N | T'  --+ (T') n be T'-module isomorphisms. Then ( r  ,-, (~b,z,N) if 

and only if  there exists a "~ E GL,,(T') such that ?(r/~,r fll (x)) = (71~2,~,,/~2(z)). 

Proof: Assume (r x, P) ~ (~, z, N). Then there exists a T-module isomorphism 

f:  P ~ N such that f (x )  = z and ~b(a) = f r  - l  for all a C A. Let 

f '  = f CO idT,. Then (~#3~,r and (r/~oI,,r o i f (x))  = (r/32,,,/32(z)) 

represent the same triple ( r  Therefore, "~ = /32 o ( f , ) - I  o/311 is the 

required element of GLn(T'). 

Conversely, assume that there exists a 7 �9 GLn (T') such that q,(7/~, ,r (x)) = 

(r/~,o,/32(z)). Then we claim that the restriction 0 of w ~ /3 f l " r f l l (w)  to P is 

an isomorphism giving the claimed equivalence. Indeed, since ill,/32 are isomor- 

phisms and "~ �9 GLn(T') ,  0 must he injective. Fhrthermore, if w �9 P then since 

(r x, P) represents a T-point of Bsev,~(A, R) we know by Lemma 1.1 that there 
8 exist a l , . . .  ,a~ �9 A and c l , . . .  ,c.~ �9 T such that w = ~ ,=1  cir Therefore 

O(w) = ~ e,O(r 
i=l 

= ~ c i / 3 ; l ( 3 2 ~ ( a , ) / 3 ; 1 ) / 3 2 ( / 3 ; l ( / 3 2 ( z ) ) )  
i 

= E c ~ r  
! 

hence O(w) �9 N. 

Finally, to show 0 is surjectivc, if t �9 N, then by Lemma 1.1 there exist 

a l , . . . , a~  �9 A and Cl, . . . ,c~ �9 T such that t = ~ = l  cir Set w = 
8 ~,=1 cir Then w �9 P and it follows from our above calculations that 

O(w) = t. Therefore the map 0 is an isomorphism of P and N that gives an 

equivalence of the triples (r x, P) and (r z, N). | 

As in [8], it is useful in our study of Bsevn(A) to define the following semi- 

invariants of this GL,, action. 

Definition 1.3: Let T be a commutative k-algebra and let x l , . . . , x ,  �9 T"  and 

let B �9 Mn(T) be the matrix defined by Bei = xi for all 1 <_ i _< n where 

{e l , . . .  ,en} is the standard basis for T n. Then we let 

Ix1,. . .  , z , ]  = det(B). 

Given any a l , . . . ,  an �9 A, we let [ a l , . . . ,  an] be the morphism given by 

[al . . . .  ,an]: LRePn(A) xteA~ ~ A h 

(r h X) ~ [mn(rl)pa,n(al )X , . . . ,  Mn(~l)pA,n(an)x]. 
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Note that  given any al ,  �9 �9 �9 a ,  E A, the function 

[ a l , . . . ,  a,~] E EA,n = SA,n @R R [ y l  . . . .  , Y,] 

is homogeneous of degree n. In particular, if wc let ci,t;3 denote the i, t entry of 

PA,,~ (ai),  then 

aESn t=l  t= l  

where we use S~ to denote the symmetr ic  group on n letters. 

If r A ~ M n ( T )  is a k-algebra homomorphism where 7' is a commutat ive  

k-algebra, then for any x E T n and for any al . . . . .  an ~:- A, we will write 

[ a l , . . .  , an ] ( r  for [a],...,an](714,,x ). 

LEMMA 1.4: Let T: RFm ~ A be an R-algebra surjection and let qA: Sm,n --+ 

Sa,n be the unique surjection such that PA,n -~ l~n(r~A) o Pm,n. Then 

(0a | i d ) ( [ n ~ , . . . ,  n , ] )  = [7(Ha) . . . .  , T(H,)]  

for any H1 . . . .  , H~ E RFm. 

Proof: Let WA,n = M,~(fA,,~) o PA,n where fA,n: SA, ,  -~ EA,n is the canon- 

ical injection. If ~ = (Yl , . . . ,Yn)  E (EA,n) ", then for any a t , . . . , a n  E A 

we have [a , , . . . ,an](WA,n,~)  = [a l , . . . ,a ,~]  by definition. In particular, for 

any H , , . . . , H n  E RFm,  [Hl , . . . ,H ,~] (wm, , ,~)  = [ H I , . . . , H n ]  where wm,,~ = 

Mn( fR fm ,n )  o Pm,n. Since Mn(r~A | id) o Wm,n = WA,n o T we get 

(qA | i d ) ( [H1 , . . . ,  Hn]) -: (r/m | id ) ( [H1, . . . ,  H,~](w,,,.,~, ()) 

-- [HI,.  . . , Hn](/t in(rlA |  ow '  . . . . . .  ~) 

= [HI . . . .  ,H,](WA,,~ o'r,~) 

=-IT(H1) , . . .  ,T(Hn)](WA,n,()  

= [ r ( H 1 ) , . . . ,  T(H,,)] 

for all H1, . . . , Hn C R i m .  | 

We take a little time here to note the similarity between the semi-invariants of 

Definition 1.3 and the functions defined in [8, Definition 1.1]. In particular, we 

note tha t  the R-algebra of m generic n • n matrices can be defined as pm,n(RFm),  

hence for any H1 . . . .  , Hn E RFm it follows from the definitions tha t  

[HI, . . . ,  Hn] = [pm,n(H,) , . . . ,  pm,n(H,,)]. 
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So when R is a field, the functions we define here form a subset of those defined 

in Definition 1.1 of [8]. 

More generally, for any a l , . . .  ,an E A, Lemma 1.4 gives us 

[ a l , . . .  , an ]  -- (TlA ~ i d ) ( [ H 1 , . . . ,  H, , ] )  

for some H1,.  �9 �9 H,, C RFm.  Therefore many of the properties of the functions in 

[8, p. 857] also have analogues here. For example, given a commutative k-algebra 

T, for any T-point (r/, x) of LRepn(A ) xn  A~ and any 7 E GLn(T), we get 

(2) [al . . . . .  anl(zf  r ,Tx) = [TOn(at)x, . . . ,  7r 
= (det(7))[al . . . .  ,a,,](rhZ). 

Therefore the function [a l , . . . , a~]  is a semi-invariant of the GLn-action on 

LRepn(A) Xn A~. 

We also have the following version of Cramer's Rule. 

LEMMA 1.5: Let T be a commuta t ive  k-algebra and let {v l , . . . ,  v,~} be a T-basis 
7l  

o f T  n. Then  for any z E T n we have z = ~-~,=1 a, vi where 

[ ' U 1 ,  . . . , U i _ I ,  Z ,  Y i + l ,  . . . , V n ]  

O, i = [V 1 . . . .  ,Vn] 

for all l < i < n. 

Finally, we get the analogy to [8, Theorem 1.3]. 

THEOREM 1.6: Let T be a commuta t ive  k-algebra and let (r x, P) and (~b, z, N) 

represent T-points  of Bscvn(A, R).  Let  T '  be a faithfully Bat commuta t ive  T-  

algebra such that P | T '  "~ (T')  n ~ N @T T' .  Choose any T ' -modu le  isomor- 

phisms fll: P |  T '  ~ (T')  n, f12: N | T '  -4 (T')  n. Then (r  P) ,-~ (~p,z ,N)  i f  

and only i f  there exists a unit u E T '  such that 

[a , , . . . ,  a , ] (nz2#,  (z)) = u [a l , . . . ,  Z, (x)) 

for all a l , .  �9 �9 an C A. 

Proof: Assume (r z, P)  ~,, (~b, z, N). Then by Lemma 1.2 there is a 7 E GL,~(T') 

such that "r(r/~,,c,/31(x)) = (r/~2,r Then we set u = det('y) and use 

equation (2). 

Conversely, assume there is a unit u E T'  such that 
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for all a l , . . . ,  an e A. Since (r P)  represents a T-point of Bsev~(A, R), for 

each 1 < j ~ n there exist H 1 j , . . . ,  H~r �9 A and c l , j , . . . ,  c~j,j �9 T t such that 

sj 
( 3 )  ~1( ~-~ cij,jr ) ~-ej 

ij=l 

by Lemma 1.1. For each 1 _< j _< n let 

(4) 

Then 

s j  

ij=l 

V l ,  �9 . . , ?3n] 
i l  in  

= u E " "  ~(ci~,l"'" c~,~)[Hi~ ,1,. �9 �9 Hi~,~} (VZ~,r Zl (x)) 
i l  i,~ 

= U [ e l ,  . . . , e n ]  

As u is a unit in T' ,  the set {v l , . . . ,  v~} must be a T'-basis of (T') ~. Therefore, 

if we let 7 �9 Mn(T') be defined by ~(e~) = v~ for all i, then 7 �9 GLn(T')  and 

det(7) -- u. 

Now we refer the reader to the proof of [8, Theorem 1.3] to show that 

~/(~7~1,r •1 (x)) = (r/~2,r hence we can use Lemma 1.2 to get that (r x, P)  

(~b, z, N) as required. | 

2. A morphism of schemes 

Let Q A,n C_ ~ A,n be the sub-R-algebra generated by the set 

{[al,. . . ,an]lal,. . . ,an e A}. We will say that h �9 QA,n is homogeneous 
o f  d e g r e e  q in QA,n if h is a homogeneous element of ZA,n of degree nq. 

In this section we define a morphism t,: Bsev~(A,R) -+ Proj(QA,n) of R- 

schemes which will help clarify the correspondence between the points of 

Bsevn(A, R) and the PGLn-orbits of LRep~(A) • ]?R . Later we will show 

that  v is actually an isomorphism (see Theorem 3.6). 

First note that if h �9 QA,n is homogeneous of degree q, then for any com- 

mutative k-algebra T, given any T-point (7),x) �9 LRepn(A ) •  A~ and any 

7 �9 GLn(T) we have h(~?'Y,~x) = (detT)qh(7),x). Therefore, if h' �9 QA,~ is also 

homogeneous of degree q, then the rational function (h/h I) is constant on every 

GL,~-orbit for which it is defined. 



Vol. 111, 1999 BRAUER-SEVERI SCHEMES 329 

THEOREM 2.1: Let T be a commutative k-algebra and let (r x, P) represent a 

T-point of Bsevn(A, R). Let T ~ be a commutative faithfully flat T-algebra such 

that P | T ~ is a free T~-module. Then for any isomorphism/3: P | T' -4 (T') n 

and for any homogeneous elements h, h' �9 QA,n of degree q, if h'(Tl~,r ) E T' 

is a unit it follows that 

f(z/Z,r ~3(x)) _ 

of the choice o f T  ~ and/3. In this case we is an element o f T  and is independent 

just  write f ( r  x, P)  for f(r/Z,r 

Proof: The independence of the value of f from the choice of j3 follows from our 

discussion immediately preceding this theorem and from Theorem 1.6. So let T"  

be another commutat ive faithfully fiat T-algebra such that  P | T "  is a free T ' -  

module and let/3": P | TH --~ (T ' )  n be an isomorphism. Then U = T ~ | T"  

is faithfully flat over both T' and T ' ,  hence U is faithfully flat over T. Identify 

T' with T '  | 1 C_ U and similarly identify T"  with 1 | T"  C_ U. By Theorem 

1.6 there exists a "7 �9 GLn(U) such that  ff(~,r = (z/~,,,r Hence 

f(r/~,r ~(x)) = f (~ , , , r  ~"(x)) ,  so the value of f is constant for each point of 

LRepn(A ) x n A~ corresponding to (r x, P) and is independent of the choice of 

T' .  Denote this value of f by f ( r  x, P). 

Now consider the special case when T "  = T ~ so U = T~| '. Then f ( r  x, P)  �9 

( T ' | 1 7 4  C_ U. So there exist u, v �9 T '  such that  f ( r  x, P)  = u |  = l |  

Let #: T' | T t --4 T ~ be the usual multiplication map. Then u = # ( f ( r  x, P)) = 

v and so u | 1 = 1 | u. Let M be the T-submodule of T ~ generated by 1 and u. 

When we tensor the inclusion T _C M with T '  we get that  T | T '  = M | T'. 

Since T' is faithfully flat over T, we get T = M and thus u �9 T so f ( r  x, P)  �9 T 

as claimed. | 

We note that  the above argument that  f(~b, x, P)  �9 T is a slight adaptat ion of 

a "faithfully flat descent" argument found in [7]. 

COROLLARY 2.2: Let T be a commutative k-algebra and let (r x, P) represent 

a T-point p of Bsev,~(A, R). Let f = h ' /h  for some homogeneous h, h' �9 QA,n 

such that deg(h) = deg(h') a n d / ( r  x, P) is defined. I f  (r z, N)  of is any other 

representative o fp  then f ( r  x, P)  = f ( r  z, g ) .  

Proo~ If (r x, P)  --~ ( r  N)  then there exists an T-module isomorphism 

w: P - +  N such that  z = w(x) and wr -1 = ~b(a) for a l l a  �9 A. There- 

fore, given a commutat ive faithfully flat T-algebra T ~ such that  N | T ~ is a free 
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T'-module and an isomorphism fl: N | T', we note that 

fl' = fl o (w | idr,): P | T' --+ (T') n 

is also a T'-module isomorphism. Furthermore, it follows that (~r = 

(7/r Therefore, by Theorem 2.1, f ( r  = f ( r  | 

So the degree zero homogeneous rational functions defined by elements of QA,n 
define rational functions on Bsev,(A, R). Therefore if f is a function of the type 

given in Corollary 2.2 and p is a T-point of Bsevn(A, R) we will write f(p) for 

the value of f at any triple representing p. 

LEMMA 2.3: Let h l , . . . , h s  C QA,n be homogeneous of degree 1 such that 
E j  QA,,~hj = (QA,~)+ where 

(QA,~)+ = ({h e QA,nIh is homogeneous of positive degree }). 

Then for any commutative k-algebra T and for any triple (r x, T n) representing 

a T-point of Bsevn(A,R), we get ~ j  Th(hj) = T where 5: EA,,~ --+ T is the 

evaluation homomorphism 5(h) = hO?r x) for all h E EA,n. 

Proof" For each 1 _< j < s let Zj be the (possibly empty) open affine subscheme of 

Spec(T) defined by Spec(T~(h~)). Then the conclusion of the lemma is equivalent 

to saying that  the Zj form an open cover of Spec(T). By [4, 1.1.7], it is sufficient 

to show that  Spec(T)(L) = [.Jj Zj (n) for every field L. 

Let L be a field and let v C HomR-~lg(T, L) = SpecR(T)(L ). Then L | T = 

is an n-dimensional L-vector space. Furthermore, since (r x, T n) represents a 

T-point of Bsevn(A, R), then Mn(v)(r | x) = n | T'L So there exist 

h i , . . . ,  bn E A such that {Mn(v)(r | x ) , . . . ,  M,~(v)(r | z)} forms 
an L-basis of L |  T n. Therefore [bl, . . .  ,b~](Mn(v) o r | x ,L  | T n) ~ O. 

Since [bl, . . . ,b~] e (QA,~)+ = ~j(QA,n)hj,  there must exist a j such that  

v ( 5 ( h j ) ) = h i ( M n ( v ) o r 1 7 4 1 7 4 1 6 2  ). | 

So we can use Lemma 2.3 to define a morphism v: Bsevn(A, R) --+ Proj(QA,,~) 

as follows. Let T be any commutative k-algebra and let p be a T-point of 

Bsev~ (A, R) represented by the triple (r x, P). Choose a faithfully flat finitely 

presented commutative T-algebra T ~ such that P | T ~ is free and choose a 

TCmodule isomorphism/3:. P | T t ~ (T~) n. Identify T with an appropriate 

sub-R-algebra of T' and let 5~: EA,,~ ~ T' be the evaluation homomorphism 

given by 5~(h) = h(r/~,r j3(x)) for all h e Era,n- 

Let { h i , . . . ,  h~} C_ QA,n be a set of homogeneous elements of degree 1 such 

that  ~j(QA,n)hj  = (QA,,,)+. Now, by aemma 2.3, the subschemes Z~ = 
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Spec(T~(h,) ) C Spec(T') form an open affine cover of Spec(T'). For each j 

we can define a morphism 0i: Z; -* Spec((QA,,~)((hj))) where the comorphism of 

0j is the R-algebra homomorphism wj: (QA,,)((h,)) --+ 7~(h,) induced from 60. 
/ Since the Zj form an affine open cover of Spec(T') and the wj are induced from 

the R-algebra homomorphism 50, the 0 i will glue together to define a morphism 

0: Spec(T') - )  Proj(QA,,). 

By our choice of T',  the canonical morphism f:  Spec(T') --+ Spec(T) is a 

faithfully flat morphism of finite type. Therefore, by [5, Proposition 1.2.7 and 

Theorem 1.2.12] for example, f is surjective and open. Therefore the images 

f (Z j )  form an open cover of Spec(T). For each 1 < j < s choose elements 

a,,j E T such that the Uz i = Spec(T~,.~) form an open cover of f (Z j ) .  Then T'  
, a t , 3  

is faithfully flat over T~,,, and the U'j  = S p e c ( T "  ) form an open affine cover 

of Spec(T'). 

So for every i and j let wii:  (QA,,)((h,)) --+ T' be the composition of 
, a i , j  

w i with the canonical homomorphism 7~o(h,) ~ T,',, . Then by Theorem '2.1 

W,,a((Qa,n)((hj)) ) C_ Ta, j .  Therefore 0 actually defines a T-point of Proj (Qa, , )  

which we will call u(T)(p). 

THEOREM 2..I: The transformation u: Bsev,,(A, R) --+ Proj(Qa,,)  given above 
defines a natural transformation of functors, hence a morphism of R-schemes. 

Proof: Given our above discussion, the only thing left to prove is that for any 

homomorphism of commutative k-algebras f :  T -~ U we have 

Proj(Qa,~)(f)  o u(T) = u(U) o Bsev~(A, R)(I).  

But we can use faithfully flat descent to reduce the proof to showing this equality 

holds for all the T-points of Bsev,~(A, R) that can be represented by triples of 

the form (r x, Tn). 

Let (0, x, T")  represent a T-point p of Bsev,(A, R). Then Bsevn(A, R)(f)(p) 
is represented by the triple 

(m.(f)r | I 1,T" |  U ~ U n) 

so u(U)oBsev,,(A, R)(f)(p) is the U-point of Proj(Qa,~) induced from (ix: Za.,~ -+ 

U given by 6~(h) = hQIM,(I), ,x | 1). Similarly, Proj(Qa,.)(f) o u(T)(p) is the 

point induced by 32: Za,,, -+ U where 62 = f o 6 and 6: EA,,, -+ T is given by 

6(h) = h(r/r x). Clearly 6! = 62 so we get the desired equality and hence u is a 

morphism of schemes. | 
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3. AIl i s o m o r p h i s m  o f  s c h e m e s  

Ill this section we will prove that  the morphism v: Bsevn(A, R) ~ Proj(QA,n) is 

an isomorphism of k-schemes. Wc not(, tha t  to prove that  v is an isomorphism, 

it is sufficient to show that  for every commutat ive  k-algebla T tha t  v(T) is a 

bijection (e.g., [3, Exercise X.1.6}). As Theorem 1.6 already tells us tha t  such a 

v(T)  is injeetive, in this section we will show that  u(T) is also surjective. 

Let T he an arbi t rary k-a.lgebr~.. To show that  z,(T) is smjective,  we wiI! first 

construct  locally free sheaf on Proj(QA,n) which is in some sense a universal sheaf 

of our PGLn-quo t i en t  scheme. Our s tar t ing point is an analogy to the argument  

given on pages 861- 862 of (8]. For the reader 's  convenience, we review Van den 

Bergh's  definition of a special sequence. 

An (m, n ) - s p e c i a l  s e q u e n c e  is a sequence of (n - 1) ordered integer pairs 

{(u~,fi~)})n__2 such tha t  1 _< fl) _< m, I _< c~j < j for all 2 _~ j < n and j # ) '  

implies (a~, fl~) # (o j ' ,  flY). When m and n, are understood,  we will just  call hi  
a special sequence. 

For each special sequence M = {(a j,/3:)}y=2 , we inductively define a sequence 

~  m~176 HI M), �9 �9 �9 ,H!, M) E RFm by letting H[ M) = 1 and HJ M) = Yflj/4(M)-*aJ 

for 2 <_ j <_ n. Let  hm = [HI m) . . . . .  H(~M)]. Now, for each 1 ~ j <_ n let a(: m) -- 

_r(HJM))anddefinegM [aiM) (M)) = , . . .  ,an j C QA,,. Let V~ = Spec((QA,)((g~))  
for each special sequence M. 

LEMMA 3.1: The set ofsubschemes {VM[M is special} of Proj(QA,n) forms an 
open afflne covering of  Proj(QA,n).  

Proof: This  follows directly from [4, 1.1.7] and [8, Lemma 16]. | 

Let 7: RF,~ ~ A be an .~-a!gebra surjectior.. For each special sequence M 

we can define the analogy to the coordinate  functions given in Equation (3) on 

p. 861 of [8]. So for each 1 <_ i , j  < n, 1 < f < m let 

t (M) = [ H I M )  . H(M) -~,u(M) u(M) , , - ~ , . . , ' t - :  , " , + l  u(~M)[ 

and let 

v, (t~) i (M) _(M) _['~, x (M') (M) i,j,~ = (7/A ~ d)(t,,j~t) = [ . . . .  , (zt_ 1 , v t # t ) a j  , a ~ .  t , .  .] 

where we use ~A: Sm,n -~ SA,n to denote the unique surjection such tha t  

PA,n o T = Mn(OA) o Pm,n. 
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LEMMA 3.2: Let M be a special sequence. Then R[VM] = (QA,~)((OM)) is 

generated as an R-algebra by the set 

, (M) - l [ l  < i , j < n , l < g < m } .  ~ V M  = t ,W~, j ;~g  m _ _ 

Proo[: Let Q1 he the sub-R-module of QA,, consisting of the zero element and 

all homogeneous elements of degree 1 in QA,n- Let QlgM ] = {hg-M 11h C QI }. As 

QA,n is generated by Qi as an R-algebra, it suffices to show that the R-module 

generated by WM is equal to Qlg~4 I. 
n ,(M) C Qlg~  1. Therefore we can use [6, Thm. 3.801, for Clearly Y~,s,e ~z , i ; e  - 

example, to reduce to the case when R is a local ring with maximal ideal m.  We 

remark that Q1g~,~ 1 is a finitely generated R-module. Let K = R / m  and l e t /~  

be its algebraic closure. Then it follows as an easy corollary of [8, Thm. 1.9] that 

E Rw(M)-1"~ ff  | �9 ~,.i;tgM ] 
,.1,e 

As/~" is fa i thful ly fiat over K,  we get 

( E  '~ ~ ' ) - , \  ~tw~,j;gg m ) | K 

Hence, by Nakayama's Lemma, 

---- Q19~41 ,~R K. 

= QlgM 1 | K. 

E r, (M) -1~ - t  rtW~,j;tgM ) = QlgM 
z,j,e 

st) we are don(;. | 

(e) For each special sequence, define ~M: Sm,n "-~ (Qm,.)((hM)) by letting ~M (x~,. 7 ) 

= g / ) h - 1  Let ~M = M,~(~bM) o p . . . .  For any commutative k-algebra T and t,t,3;t,~ M . 

any k-algebra homomorphism 7?: S" . . . .  ~ T, let 

r/(4 id = 7? 6) id: E . . . .  --+ T [ y l , . . . ,  y.]  

be the induced graded homomorphism. Then for any homogeneous h E Era,n, 

r/| id induces a homomorphism 7/(h): (Em,n)((h)) "4 (T[yl , . . .  , y n l ) ( ( r t ~ i d ( h ) ) ) .  

LEMMA 3.3: Let T: RFm -+ A be an R-algebra surjection and let ~: Sm,n --+ 

Sam be the unique surjection such that PA,n o v = Mn(~) o Pm,,~. Then for any 

t t l , . . . ,  H,~ E RFm and for any special sequence M, 

[H, . . . . .  It,~](MnO?(h,~)) o ~2M,e,) = IT(H,) , . . .  ,T(H,~)] 
gM 
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Proof: Let M = {(aj ,f l j)[2 _< j _< n} be a special sequence. Then for each 

l_<_i,j <_n 

t(M) I" " , H ~  ), (M) r4(M) { hM if i :  j = y ~ ,  t l . ,  , _ ~ + ~  . . . .  l = 
i,~,;~, �9 - 0 i f  i 7' j 

~, H (M) As HI M) sinceH~ M)=o,~J  aj �9 = 1, we have g)M(ItlM))el = e l .  Therefore for 
tM) 

j > 2 we get can use induction to get k~M(HJM))(el) = r )el = 

@U(Y~,)e~, := e i.  Hence 

t ( M ) ' M  " ,,j;e~ ,4~(h~,)) o ~M, e l )  

= '](hM )[ ' ' - ,  qJM (H} M))e,, ~M (Ye)qJ M (H~ M) )e,, k0M ( H ~ ) ) e ,  . . . .  ] 

= ~(hM )[ . . . .  el -1, qdM (Ye)ej,  e,+l . . . .  ] 
= ~hhM)(i, j th entry of ~M(Ye)) 
: 

(M) -1 
= ?)(hM)(ti,j;ehM ) 

(M) _-1 
W,O;ty M 

[ r (HIM)) , . . . ,  r(H(~ u)] 

9M 

In particular, hM( Mn(rl(hM ) ) o kO M , el ) = 1 and so for any H1 . . . .  , H,~ C RFm 

[ H a , . . . ,  H,~I(M~(r/(aM)) o k0M, e, ) -- I S , , . . . ,  H~] hM (Aln(~(hM)) 0 kOM,el)  

But Lemma 3.2 tells us tha t  [HI . . . .  , Hn]hM ~ C (Qm,n)((hM)) can be expressed 
l ( M ) h - I  in terms of the ~,,j;e"M - Hence for any H I , . . .  , H n E _I:IFM, the value of 

[H,,..., 
hM (Ain(rl(hM)) o g2M, e l )  

t (M) 'M " ~ KI/M,el). So the result is completely determined by the values ,,j;e( ,~(rl(hu)) o 

follows. II 

LEMMA 3.4: Let T: RFm ~ A be a surjection and let '1: Sm,n -~ SA m be 

the unique homomorphism such that PA,n o r = MnQI) o Pm,,~. Then for any 

special sequence M there exists a homomorphism ~M: A ~ Mn(R[VM]) such 

that ~M o T = Mn(~(hM)) o k9 M. 

Proof: Let 

CM: SA,n ~-- (SA,n @,7 Sin,n) -~" (SA,n @,7 (~m,n)((hM))) '~ (~A,n)((gM)) 
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be the homomorphism induced by tensoring 

~)M: ~m,n -9" (Qm,n)((hM)) C_ (~m,n)((h^,))  

with SA,n over  r/. Then r o r/ = q(hM) o OM. Therefore 

Mn(?](hM)) o d2 M ~- Mn(T](hM)) o ]t~n(~M) 0 Pm,n 

= M n ( r  o M,~(n)  o p,,,,,~ 

= M n ( r  ) OpA,n OT. 

Let ff~M = ]tIn(r o PA,n. Then (I) M has the desired property. 

Note that for any special sequence M the triple 

(M,,((~A)(h.)) o ~M, c,, (R[VM]) ~) 

represents an R[VM}-point of Bsevn (Rim, R). Indeed, since hM evaluated at this 

triple is necessarily 1, the set 

{ ]t[n( ('qA)(hM ) )~  M( H I M ) ) e l ,  . . . , l~/~n( (?]A)(hM ) )kO M( H(nM))el } 

forms an R[VM]-basis of (R[VM]) n. Therefore, by Lemma 3.4, the triple 

(r el,  (R[VM]) n) represents an R[VM]-point of Bsevn(m, R). 

Let .hi and M'  be any two special sequences, and let "~M,M': R[VM] = 

(QA.~)((gM)) ~ (QA,~)((gMgM,)) be the canonical homomorphism. Then by 

Lemma 3.3 for any al . . . . .  a ,  E A we get 

[ a l , . . . , a n ] ( l ~ l n ( , ' ~ M , M , ) ~ M , e l )  = ( h M , / h M ) [ a l , . . . , a n ] ( M n ( ~ M , , M ) ~ M , , e l ) .  

Therefore, by Theorem 1.6, there exists a ~M',M ~- GLn((QA,,~)((gMgM,))) such 

that 

~M,,M( Mn(,,~M.M, )ffP M , el ) = ( Mn(  )~M,,M )ffP M,, el ). 

Now we can use [2, Exer. II.1.22], for example, to glue these triples into a triple 

(~ ,a ,  E) such that E is a locally free sheaf of rank n on Proj(QA,,), �9 is a global 

section of the sheaf of homomorphisms Hom(A, End(E(_) ) ,  and a is a global 

section of s 

PROPOSITION 3.5: Let T be a commutative k-algebra. Then for every point 
p: Spec(T) -~ Proj(QA,n) the triple (p*r F(p*s represents a T-point of 
Bsev,~(A, R). (Here we use F (_ )  to denote the global section of a sheaf.) 
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Proof: First note since s is a locally free sheaf of rank n on Proj(QA,n) that 

p*s is locally free of rank n on Spec(T). Furthermore, by Lemma 3.2, h~r any 

open snbscheme V of Proj(QA,n), s  is finitely generated as an O0~. , (V  )- 

module, where O q , . ,  denotes the structure sheaf of Proj(QA,n). So F(p~163 is 

finitely generated as a T-module. Therefore F(p*s is a projective T-module of 

constant rank n. Also p*a C F(p*s by definition. Finally, we need to show that 

p*O(A)T(p*a) = F(p*s 

By [6, Thin. 3.80], for example, we can assume T is a local R-algebra. There- 

fore by Lemma 3. l there exists a special sequence _M such that gM(p*Cb, p*e) is a 

unit in T. Hence the set {p*Cb(a~M))p*cr . . . .  ,p*(P(a~M))p*cr} defines a T-basis of 

r (p*s  Therefore the triple (p*(I), p 'a ,  F(p*s defines a T-point of Bsev~(A, R). 
| 

THEOREM 3.6: For any commutative k-algebra T the map v(T)  is a surjection. 

Therefore the morphism v: Bsevn(A, R) -~ Proj(QA,n) is an isomorphism. 

Proof: For any commutative k-algebra T, Theorem 1.6 implies u(T) is injective. 

Therefore if we show u(T) is also surjective we can define an inverse morphism 

u -1 to u by letting u - l ( T )  = u(T) -1 for every commutative k-algebra T (e.g., 

[3, Exercise X.l.6]). 

Let T be an arbitrary commutative k-algebra and let p: Spcc(T) ~ Proj(QA,n) 

be a T-point of Proj(QA,n). Then, by Proposition 3.5, tile triple 

(p'ap, p'a,  F(p*s represents a T-point q of Bsevn(A, R). Therefore, by showing 

v(T)(q) = p we prove the theorem. 

Let A C_ T be such that the set {Spec(Tw)lw E A} is an open cover of Spec(T), 

for every w E A, I~,, = P|  is a free Tu,-module, and Spec(T~) is a subscheme 

of p- l (VM) for some special sequence M. Let T' = I]~eAT~. Then T' is a 

faithfully flat T-algebra and P | T'  is a free T~-module. Let j: Spec(T ~) 

Spec(T) be the morphism defined by tile diagonal homomorphism T ~-+ T'  given 

by t ~ I-I,,eA t~o. So by showing u(T)(q) o j  = p o j ,  we see that v(T)(q) and p 

agree locally, hence are equal as required. 

Since P | T '  is a free T'-module, v(T)(q) o j is defined by the evaluation 

homomorphism ~: QA,n ~ T' determined by 

~([a, , . . . ,a ,~])  = [a l , . . . , an] ( (po j )*eP, (po j )*a ,F( (po j )*s  

= I ]weA[a l , . . . , an] ( (po i~ )*~ , (po iw)*a , I ' ( (po iw)*s  

for any a l , . . . , a ,~  E A where i~: Spec(T~) ~ Spec(T) denotes the canonical 

embedding. 
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Choose w E A and let M be a special sequence such that Spec(Tw) is a sub- 

scheme of p- l(Vta) .  Let pw: Spec(T~) ~ VM be the morphism induced by p, 

let c~:  R[VM] --~ T~ be the co-morphism of p~, and let (w: R[VM] ~ Tw be 

the homomorphism induced from (. If iM: VM ~ Proj(QA,,~) is the canonical 

embedding, then iM o Pw = P o iw. So for any a l , . . . ,  an E A, 

( ( [ a l , . . . ,  an]g~' )= ( [ a l , . . . ,  an]gM 1 )((p o i~o)*dP, (p o i~o)*a, F((p o i~)* L:)) 

= ( [ e l , . . . ,  an]gM1)((iM o pu,)*gp, (iM o pw)*a, F((iM o Pw)*/:)) 

= ([al . . . .  ,an]gM1)(M,~(a~)~PM,el | 1, (R[VM]) n | T~o) 

= Ctw ( ( la  1 . . . .  , a n ] g M 1 ) ( e M ,  e l ,  (R[VM])") )  

= aw( [a l , . . . ,  a.lgM 1) 

where the last equality follows from Lemmas 3.3 and 3.4. Since R[VM] is 

generated by the elements [al ~ -1 . . . .  , anJgM (by Lemma 3.2), we get that a~, and 

(w agree for an arbitrary w E A. Hence we conclude that u(T)(q) o j = p o j as 

required. II 
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