ISRAEL JOURNAL OF MATHEMATICS 111 (1999), 321-337

BRAUER-SEVERI SCHEMES
OF FINITELY GENERATED ALGEBRAS

BY

GEORGE F. SEELINGER*

Department of Mathematical Sciences, Northern Illinois University
DeKalb, IL 60115, USA
e-mail: seeling@math.niu.edu

ABSTRACT

In this paper we characterize the Brauer—Severi scheme of a fixed degree
(as defined by M. van den Bergh) of a finitely generated algebra over a
commutative ring as the Proj of a graded commutative ring.

Introduction
The purpose of this paper is to give an alternate characterization of the Brauer—
Severi scheme of a finitely generated algebra as defined by M. van den Bergh in [9].
We do this by relating the Brauer-Severi scheme to the variety of representations
of the algebra as defined below. In particular, for any finitely generated algebra
A over a commutative ring R we show that its Brauer—Severi scheme of degree n
(n a positive integer) is isomorphic to Proj(Q4 ) for some graded commutative
R-algebra Q4. The graded R-algebra 4, is shown to be generated by a
subset of semi-invariants of the diagonal GL,, action on the fibered product of
the scheme of representations of A of rank n with A™. This generalizes Corollary
1.11 of [8] to finitely generated algebras over an arbitrary commutative ring.
Here we will assume that all rings will be associative rings with an identity
element and all ring homomorphisms will preserve the identity elements. Let
us choose a commutative base ring k. We will use the definition of a k-scheme
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found in [4, §1.1.9] so that a k-scheme will be a functor from commutative k-
Algebras to Sets with certain additional properties. For any positive integer m
let F,, = k{1, ...,Ym} be the free (noncommutative) k-algebra on m generators.
If R is a commutative k-algebra, we will let RF,,, = R ®; F,.

We will also need to make use of the functor M,, from commutative k-Algebras
to k-Algebras defined by letting M,,(S) be the ring of n x n matrices with entries
in the commutative k-algebra S. If f: S — T is a homomorphism of commutative
k-algebras, then the homomorphism M, (f): M,(S) = M,(T) will be defined by
applying f to each entry of each matrix in M, (S).

If Q is a graded k-algebra and h € @) is a homogeneous element, we will
adopt the following notations: @), will denote the localization of the ring @ at
the multiplicatively closed subset {1,h, h?,...} and Q((x)) will denote the sub-k-
algebra of @}, generated by the homogeneous elements of degree zero in Q.

Now fix a commutative k-algebra R and a positive integer n. For any finitely
generated R-algebra we define the Lattice Representation Scheme of degree
n to be LRep, (A) = Spec(Sa,n) where we use S, to denote the universal
commutative R-algebra (uniquely determined up to isomorphism) given in [1].
If pan: A — M,(Sa,,) is the corresponding R-algebra homomorphism, we have
the following universal property:

Given any R-algebra homomorphism ¢: A — M,(T) where T is a
commutative R-algebra, there exists a unique R-algebra homomor-
phism 7: S4,, — T such that ¢ = M,(n) o pa,n.

We will call a pair (S4n,p04,») 2 universal pair for A of degree n.

One consequence of this universal property is that for any commutative
R-algebra T, there is a natural one-to-one correspondence between the set of
R-algebra representations ¢: A — M,(T) and the set of T-valued points
LRep,(A)(T). For any R-algebra representation ¢: A — M, (T), let ny denote
the T-valued point of LRep, (A) corresponding to ¢.

For any positive integer m, it follows from [1] that we can choose Sk, , to
be Sy = R[m££])|1 < 4,j < m,1 < ¢ < m], the polynomial ring in the mn?
¥
M (Sm,n) where p,, , is determined by ppmn(Ye) = [:cgf])] foralll < ¢ < m.
Therefore, given a surjection 7: RFy,, — A, the universal property of (S, n, Pm.n)
determines an embedding of LRep,(A) in X,,, = LRep,(RF,) as a closed

commuting indeterminants z; . and we can choose prF, n to be pmn: RFp —

subscheme. (Note that, as a scheme, X, , is just the affine scheme Amn* J)
Finally, we define a GL,-action on LRep,, (A) as follows. For any commutative
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R-algebra T and for any n € LRep,, (A)(T), v € GLn(T) let n7: San — T be the
R-algebra homomorphism corresponding to the representation given by

¢: A — M, (T)

a— Y(Mn(n) 0 pan(a))y™".

Note that if 5,7’ are T-points of LRep,, (A) then 5 and %’ induce isomorphic 7-
lattice representations (i.e., the A-module structures induced on 7" by 7 and %'
are isomorphic) if and only if there exists an v € GL,(T') such that o' = 7.

1. The Brauer-Severi scheme

Let R be a commutative k-algebra and let A be an R-algebra that is not neces-
sarily commutative. Let B, (A, R) denote the set of all pairs (¢, P) such that P
is a left A-module that is a finitely generated projective R-module of constant
rank n and p: A — P is a surjective A-module homomorphism. We will call
two pairs (¢, P) and (¢, Q) equivalent if there exists an A-module isomorphism
u: P — @ such that v o ¢ = 9. In this case, we will write (¢, P) ~ (,Q) to
indicate the pairs are equivalent.

Let Bsev,(A, R) denote the set of equivalence classes of ~ in B,(A, R). Then
we let Bsev,(A, R) denote the functor from commutative R-Algebras to Sets
that takes the commutative R-algebra S to the set Bsev,(A ®gr 5,5). The
functor Bsev,, (A4, R) naturally extends to a functor on R-schemes and is a closed
subfunctor of the Grassmannian functor, hence is an R-scheme (see [9, Prop.
2]). So we define the Brauer-Severi scheme of A over R of degree n
to be the R-scheme Bsev, (A, R). Now we can use the following lemma of M.
Van den Bergh’s to relate the Brauer-Severi scheme of degree n to the R-lattice
representation scheme of degree n.

LeMMA 1.1 ([9, Lemma 3]): Let R be a commutative ring, T be a commutative
k-algebra, and A an arbitrary R-algebra. Then the T-points of Bsev,, (A, R) are
in one-to-one correspondence with equivalence classes of triples (¢, z, P) where P
is a finitely generated projective T-module of constant rank n, ¢: A — Endp(P)
is a k-algebra homomorphism such that ¢(R) C T, and x € P is such that
¢(A)Tx=P.

In the above lemma, we say two triples (¢,z, P) and (¢’,z’, P') represent-
ing T-points of Bsev,(A, R) are equivalent if there exists an A ® g T-module
isomorphism u: P — P’ such that u(z) = z'.
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Note: 1f T is a commutative k-algebra and the triple (¢, z, P) represents a T-
point of Bsev,(A, R), then by Lemma 1.1 the representation ¢ induces an R-
algebra structure on T. Furthermore, if two triples represent the same T-point,
then the two triples induce the same R-algebra structure on 7. Therefore, once

we specify a T-point of Bsev,, (A, R) we have specified an R-algebra structure on
T.

For every commutative R-algebra T identify 7" with A%{T). Then to every
triple (¢, z,T™) that represents a T-point of Bsev, (A, R) we can associate a T-
point (ny, z) of LRep,,(A) xr A}, where 7, is the unique homomorphism such
that 9 = Mp{(ny) ° pan-

More generally, assume 7' is a commutative R-algebra and the triple (¢, z, P)
represents a T-point of Bsev,(A, R). Then there exists a faithfully flat com-
mutative T-algebra T such that P ®7 T” is a free T'-module of rank n (for
example, let T" = [],;, Tm where the product ranges over the maximal ideals
m of T). Choose a T-module isomorphism 8: P @ T" — (T")" and let f:
Endr/ (P ®7 T') - M,(T") be the corresponding T-algebra isomorphism. Since
T’ is faithfully flat over T, we can identify P with a sub-T-module of P @7 T"
and we can identify Endr(P) with its image in Endr/ (P ®7 T') under the map
¢ — ¢ ®idr. Then the triple (8 o ¢, B(z),(T")™) represents a T'-point of
Bsev, (4, R). So, given this choice of 77 and 3, we can associate the T'-point
(ng,¢, B(z)) of LRep,(A) xgr A% to the triple (¢, z, P).

This association of a T"-point of LRep,(A) Xg A% to (¢,z, P) depends of
course on the choice of 7¥ and on the isomorphism 8. The question then arises,
given a triple (¢, z, P) representing a T-point of Bsev, (A, R) how are the various
representatives of this triple in LRep, (A) xg A} related? First, let us fix a
faithfully flat commutative T-algebra T’ such that P @1 T’ is a free T'-module
of rank n. Let 8,0 P®7r T’ — ()" be T’-module isomorphisms. Then there
exists a v € GLn(T") such that 5’ = yo. Therefore, for any f € Endp (P®7T")
we get B/(f) = 'yﬁ(f)'y'l. So we can define a GL,, action on LRep,,(A4) xg A}, by
p: GLy, X g (LRep,, (A) xr A}) — LRep,(A) x g A}, where, for any commutative
R-algebra S we have

u(S): GLn(S) x {(LRep,(A)(S) x A%(S)) — LRep,{A)(S) x A(S)
(v, (m,2)) == (07, 72).

LEMMA 1.2: Let T be a commutative k-algebra and let (¢,z, P) and (¢, 2z, N)
represent T-points of Bsev,(A, R). Let T' be a faithfully flat commutative T-
algebra such that P@r T' = (T')" = N ®@r T’ and let f1: P T' — (T')",
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Bo: N Q7 T' = (T')" be T'-module isomorphisms. Then (¢, z, P) ~ (¢, z, N} if
and only if there exists a vy € GL,(T") such that ¥(ng, ¢, 51(z)) = (18,4, B2(2)).

Proof: Assume (¢, z, P) ~ (9,2, N). Then there exists a T-module isomorphism
f: P — N such that f(z) = z and ¥(a) = f¢(a)f~! for all @ € A. Let
= f®@idr. Then (n3,4,81(x)) and (ng,01.6, B2 0 f'(x)) = (ng,,y.B2(2))
represent the same triple (¢,x, P). Therefore, v = By 0 (f')"!o [31_1 is the
required element of GL,(T").

Conversely, assume that there exists a v € GL, (7"} such that ¥(7g, 4, 81(z)) =
(118,.5» B2(2)). Then we claim that the restriction 6 of w — S5 'yB:i(w) to P is
an isomorphism giving the claimed equivalence. Indeed, since 3, 32 are isomor-
phisms and v € GL,(T"), 6 must be injective. Furthermore, if w € P then since
(¢, z, P) represents a T-point of Bsev, (A, R) we know by Lemma 1.1 that there
exist a1,...,as € A and ¢,...,¢s € T such that w = Zle c;d(a;)x. Therefore

ow) = 3 cd(d(a))

1=1
= Y oB5 (vBudla) B ) BBy 1B ()

1

= Y By (Ba(ai)By ) B(B5 H(Ba(2)))

= Yapla):,

hence 8(w) € N.

Finally, to show @ is surjective, if ¢ € N, then by Lemma 1.1 there exist
ai,...,as € A and ¢1,...,cs € T such that ¢t = Y7_, citp(a;)(z). Set w =
Soioieid(a)(z). Then w € P and it follows from our above calculations that
#(w) = t. Therefore the map 0 is an isomorphism of P and N that gives an
equivalence of the triples (¢, z, P) and (¢, 2, N). n

As in [8], it is useful in our study of Bsev,(A) to define the following semi-
invariants of this GL,, action.

Definition 1.3: Let T be a commutative k-algebra and let xq,...,z, € T™ and
let B € M,(T) be the matrix defined by Be; = z; for all 1 < i < n where
{e1,...,en} is the standard basis for T". Then we let

[z1,...,2n] = det(B).
Given any ay,...,a, € A, we let [ay,...,a,| be the morphism given by

[(Ll, e ,an]: LRepn(A) XR AZ 4 A}{
(77»1’) — [Mn(r’)pA,n(al )xv sy Mn(n)pA,n(an)'T]'
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Note that given any aq,...,a, € A, the function

[al,...,an] (S ZA,n = S/Ln ®r R[yl,...,yn]

is homogeneous of degree n. In particular, if we let ¢; ;,; denote the i,t entry of
pan(a;), then

n n
(1) @1y, 0n] = Z sgn(o) (Zﬁ.t;o(l)%) <ch'¢;a(")yt>
t=1

CES, t=1

where we use S, to denote the symmetric group on n letters.
If ¢: A - M,(T) is a k-algebra homomorphism where 7' is a commutative
k-algebra, then for any z € T™ and for any a;,...,an, € A, we will write

[a1,...,a,](@, ) for [ay,...,an](ne, x).

LEMMA 1.4: Let 7: RF;, > A be an R-algebra surjection and let 74: Smn —
San be the unique surjection such that pan, = Mn(n4) © pm.n. Then

(na @id)([Hy, ..., H,)) = [t7(Hy),...,7(H,)]

for any Hy,...,H, € RF,,.

Proof: Let wan = Mp(fan) © pan where fan: San = Tan is the canon-
ical injection. If & = (y1,...,yn) € (Ta,n)", then for any ay,...,a, € A
we have [a1,...,an)(wan,&) = [a1,...,an] by definition. In particular, for
any Hy,...,H, € RF,, [Hi,...,H.)(wmn, &) = [H,...,Hp] where wnn =
Mp(frF, n)© Pm.an. Since Mp(na ®id) owpmpn = wan 0T we get

(na ®id)([Hy, ..., Hy]) = (na @ id)([H1, ..., HaJ(wm s, E))
= H,.. Ha](Ma(na @1d) 0 wi 0, §)
= [Hy,...,Ho)J(wanoT§)
= [r(Ih),...,7T(Ha)|(wAn, &)
= [r(Hy),...,7(Hy)]

for all Hy,...,H, € RF,,. ]

We take a little time here to note the similarity between the semi-invariants of
Definition 1.3 and the functions defined in [8, Definition 1.1|. In particular, we
note that the R-algebra of m generic n x n matrices can be defined as p,, n(RFm),
hence for any H,, ..., H, € RF,, it follows from the definitions that

[Hls .. -aHn] = [pm.n(Hl): ‘e -~pm,n(Hn)}-
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So when R is a field, the functions we define here form a subset of those defined
in Definition 1.1 of [8].
More generally, for any a,,...,a, € A, Lemma 1.4 gives us

[@1,. .. a,]) = (na ®1d)([H:,. .., Hy])

for some H,,..., H, € RF,,. Therefore many of the properties of the functions in
(8, p. 857] also have analogues here. For example, given a commutative k-algebra
T, for any T-point (7, z) of LRep, (A) xg A% and any v € GL,(T), we get

@ (@1, .- an](n”,72) = [vénlar)z,. .., vdn(an)z|
(det(y))[ai, - -, an)(n, ).

Therefore the function [a1,...,a,] is a semi-invariant of the GL,-action on
LRep, (A) xr A%.
We also have the following version of Cramer’s Rule.

LeEMMA 1.5:  Let T be a commutative k-algebra and let {vy, ..., v,} be a T-basis
of T™. Then for any z € T we have z = Y, a,v; where

— [Ul,...,Ui_],z,vi+1,-..,'l)n]
[’U],...,'l)n]

Q;

foralll1 <i<n.

Finally, we get the analogy to (8, Theorem 1.3].
THEOREM 1.6: Let T be a commutative k-algebra and let (¢, z, P) and (¢, z, N)
represent T-points of Bsev,(A, R). Let T' be a faithfully flat commutative T-
algebra such that P @1 T’ = (T")™ =2 N @ T'. Choose any T’'-module isomor-
phisms f1: PQr T = (T"®, fo: N7 T' — (T')*. Then (¢,z,P) ~ (¢, 2z, N) if
and only if there exists a unit u € T’ such that

a1, an](n8, 0, B2(2)) = ular, - . an)(ng, 6, B (2))

for all ay,...,a, € A.

Proof: Assume (¢, z, P) ~ (¥, 2, N). Then by Lemma 1.2 there is a v € GL,(T")
such that vy(ng, ¢,81(z)) = (Mgy.v,02(2)). Then we set u = det(y) and use
equation (2).

Conversely, assume there is a unit u € T” such that

(a1, - an) (Mg, 0, B2(2)) = wlar,. .., aa) (g, 6, Br (7))
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for all ay,...,a, € A. Since (¢,z, P) represents a T-point of Bsev, (A, R), for
each 1 < j < n there exist Hy ;,...,H,, ; € Aand c1,...,¢5, ; € T' such that

(3) [31( i Ci,-,j(f’(HiJ,j)z) =€
i=1
by Lemma 1.1. Foreach 1 < j < n let
(4) v; = ﬁ2( SZJ Cij,jw(Hij,j)z)-
ij=1
Then
1, ] = D Dl o) ity s i ) (1.0, B2(2)

= uy (Gt i) [Hig 1o Hig n)(mgy,0, B1())

uler, ..., en)
= u.
As u is a unit in 77, the set {vq,...,v,} must be a T'-basis of (T')". Therefore,

if we let v € M,(T") be defined by v{e;) = v; for all ¢, then v € GL,(T") and
det(y) = u.

Now we refer the reader to the proof of [8, Theorem 1.3] to show that
V(08,41 B1(2)) = (18,4, B2(2)), hence we can use Lemma 1.2 to get that (¢, z, P)
~ (3, 2, N} as required. |

2. A morphism of schemes

Let Qan <€ Xan be the sub-R-algebra generated by the set
{la1,-.-,anlla1,...,an € A}. We will say that h € Q4 is homogeneous
of degree ¢ in Qa4 5, if h is a homogeneous element of ¥4 ,, of degree ng.

In this section we define a morphism v: Bsev,(4,R) — Proj{(Qa) of R-
schemes which will help clarify the correspondence between the points of
Bsev, (A4, R) and the PGL,-orbits of LRep,(4) xg P! Later we will show
that v is actually an isomorphism (see Theorem 3.6).

First note that if A € Qa,, is homogeneous of degree ¢, then for any com-
mutative k-algebra T, given any T-point (n,z) € LRep, (A) xr A} and any
v € GL,(T) we have h(n”,vz) = (dety)?h(n, ). Therefore, if b’ € Q4 is also
homogeneous of degree g, then the rational function (h/h’) is constant on every
GL,-orbit for which it is defined.
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THEOREM 2.1: Let T be a commutative k-algebra and let (¢, z, P) represent a
T-point of Bsev,(A, R). Let T’ be a commutative faithfully flat T-algebra such
that P®7 T' is a free T'-module. Then for any isomorphism 3: PQr T’ — (T")"
and for any homogeneous elements h,h' € Q 4. of degree q, if W' (ng,4, (z)) € T
is a unit it follows that

F(np,9,8(2)) = J%i;%%

is an element of T and is independent of the choice of T' and . In this case we
just write £(¢,, P) for f(ns,¢,8(a)).

Proof: The independence of the value of f from the choice of § follows from our
discussion immediately preceding this theorem and from Theorem 1.6. So let T
be another commutative faithfully flat 7-algebra such that P @ T” is a free T"-
module and let 8”: P @7 T” — (T"")" be an isomorphism. Then U = T" @1 T"
is faithfully flat over both 7" and T", hence U is faithfully flat over T. Identify
T with 7" ® 1 C U and similarly identify 7 with 1 ® T C U. By Theorem
1.6 there exists a v € GL,(U) such that y(ng,¢, 8(z)) = (7s+,4,6"(z)). Hence
f(ng.e,8(z)) = f(npr e,B8"(x)), so the value of f is constant for each point of
LRep, (A) x r A}, corresponding to (¢, z, P) and is independent of the choice of
T". Denote this value of f by f(¢,z, P).

Now consider the special case when T = T" soU = T'®7T". Then f(¢,z,P) €
(T'®1)N(1KT’) C U. So there exist u,v € T” such that f(¢,z, P) = u®l = 1Qu.
Let p: T'®7 T’ — T’ be the usual multiplication map. Then u = u(f(¢,z, P)) =
vand so u®1=1®u. Let M be the T-submodule of T’ generated by 1 and u.
When we tensor the inclusion T C M with 77 we get that T+ T =M @7 T'.
Since T" is faithfully flat over T, we get T = M and thus u € T so f(¢,z,P) €T

as claimed. |

We note that the above argument that f{¢,z, P) € T is a slight adaptation of
a “faithfully flat descent” argument found in [7].

COROLLARY 2.2: Let T be a commutative k-algebra and let (¢, z, P) represent
a T-point p of Bsev, (A, R). Let f = h'/h for some homogeneous h,h' € Qa
such that deg(h) = deg(h’) and f(¢,z, P) is defined. If (¢, z, N) of is any other
representative of p then f(¢,z, P} = f(¢,2,N).

Proof: If (¢,z,P) ~ (,2,N) then there exists an T-module isomorphism
w: P — N such that z = w(z) and wé(a)w™! = t(a) for all @ € A. There-
fore, given a commutative faithfully flat T-algebra T” such that N ®¢ T" is a free
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T’-module and an isomorphism 3: N ¢ 7", we note that
ﬂl =fo (’UJ ®idr:): P Qr T — (T’)n

is also a T'-module isomorphism. Furthermore, it follows that (146,08 (z)) =
(ny.8,B(2)). Therefore, by Theorem 2.1, f(¢,z, P) = f(4, 2, N). |

So the degree zero homogeneous rational functions defined by elements of Q 4 »,
define rational functions on Bsev,{4, R). Therefore if f is a function of the type
given in Corollary 2.2 and p is a T-point of Bsev,(4, R) we will write f(p) for
the value of f at any triple representing p.

LeMMA 2.3:  Let hy,...,hs € Qan be homogeneous of degree 1 such that
>; Qanh; =(Qan)+ where

(Qan)+ = ({k € Qanlh is homogeneous of positive degree }).

Then for any commutative k-algebra T and for any triple (¢,z,T™) representing
a T-point of Bsev, (A, R), we get 3 Td(h;) = T where &: Xp, — T is the
evaluation homomorphism d(h) = h(ng,z) for all h € ¥ 4 .

Proof: Foreach 1 < j < slet Z; be the (possibly empty) open affine subscheme of
Spec(T) defined by Spec(T(x;)). Then the conclusion of the lemma is equivalent
to saying that the Z; form an open cover of Spec(T’). By [4, I.1.7], it is sufficient
to show that Spec(T)(L) = ; Z;(L) for every field L.

Let L be a field and let v € Homp_ a1, (T, L) = Specg(T)(L). Then L ®, T™
is an n-dimensional L-vector space. Furthermore, since (¢,z,T") represents a
T-point of Bsev, (A, R), then M,(v)(#(A))L(1®z) = L ®, T™. So there exist
b1,...,bn € A such that {M,(v)(¢(b1))(1 @ z),..., Ma(v)(¢(bs))(1 ® z)} forms
an L-basis of L ®, T™. Therefore [by,...,b:](Mp(v) 0 ¢,1 @ z,L ®, T™) # 0.
Since [b1,...,bn| € (Qan)+ = X;(Qa,n)h;, there must exist a j such that
v(8(hj)) = hj(Mp(v) 0 ¢,1® 2, L&, T) # 0 and hence v € Z;(L). n

So we can use Lemma 2.3 to define a morphism v: Bsev,(A4, R) = Proj(Qa4,»)
as follows. Let T be any commutative k-algebra and let p be a T-point of
Bsevn (A, R) represented by the triple (¢, z, P). Choose a faithfully flat finitely
presented commutative T-algebra T” such that P ® T’ is free and choose a
T'-module isomorphism 3:. P @1 T" — (T')*. Identify T with an appropriate
sub-R-algebra of T’ and let é3: ¥4 n — T’ be the evaluation homomorphism
given by da(h) = h(ns,¢,B(z)) for all h € X, 5.

Let {h1,...,hs} € Qa,n be a set of homogeneous elements of degree 1 such
that > .(Qan)h; = (Qan)+- Now, by Lemma 2.3, the subschemes Z; =
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SpeC(T‘;B(hJ)) C Spec(T’) form an open affine cover of Spec(T’). For each j
we can define a morphism 6;: Z; - Spec({Qa.n)((r,))) where the comorphism of
6, is the R-algebra homomorphism w;: (Qa.n)((n,)) — Téa(h;) induced from dg.
Since the Z; form an affine open cover of Spec(7”) and the w; are induced from
the R-algebra homomorphism ég, the 8; will glue together to define a morphism
6: Spec(T") —» Proj(Qa.»)-

By our choice of T', the canonical morphism f: Spec(T’) — Spec(T) is a
faithfully flat morphism of finite type. Therefore, by [5, Proposition 1.2.7 and
Theorem 1.2.12] for example, f is surjective and open. Therefore the images
f(Z;) form an open cover of Spec(T). For each 1 < j < s choose elements
a,,j € T such that the U, ; = Spec(Ty, ;) form an open cover of f(Z]). Then T,.,
is faithfully flat over T,, | and the U, = Spec(T,, ) form an open affine cover
of Spec(T").

So for every 7 and j let w;;: (Qan)(n,)y — T;” be the composition of
w; with the canonical homomorphism Téa(h” — T, ,. Then by Theorem 2.1
Wy ;((Qan)n,))) € Ta,,- Thercfore 6 actually defines a T-point of Proj(Qa.»)
which we will call v(T')(p).

THEOREM 2.4: The transformation v: Bsev, (A, R) = Proj(Q.») given above
defines a natural transformation of functors, hence a morphism of R-schemes.

Proof: Given our above discussion, the only thing left to prove is that for any
homomorphism of commutative k-algebras f: T — U we have

Proj(Qan){(f) o v(T) = v(U) o Bsev,, (A, R)(f).

But we can use faithfully flat descent to reduce the proof to showing this equality
holds for all the T-points of Bsev,(A, R) that can be represented by triples of
the form (¢, z,T™).

Let (¢,z,T™) represent a T-point p of Bsev,(A, R). Then Bsev,(A, R)(f)(p)
is represented by the triple

(Ma(f)$, 205 1,T" @; U =U™)

so v(U)oBsev, (A4, R)(f)(p) is the U-point of Proj(Q 4 ») induced from §;: £ 4., —
U given by 6,(h) = h(nm,(5)e, T ® 1). Similarly, Proj(Qa,»)(f) o v(T)(p) is the
point induced by é2: £4, — U where 2 = fod and é: £4,, — T is given by
d(h) = h(ng,x). Clearly §; = §; so we get the desired equality and hence v is a
morphism of schemes. §
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3. An isomorphism of schemes

In this section we will prove that the morphism v: Bsev,(A, R) — Proj(Qa,») is
an isomorphism of k-schemes. We note that to prove that v is an isomorphism,
it is sufficient to show that for every commutative k-algebia T that v(T) is a
bijection (e.g., [3, Exercise X.1.6]). As Theorem 1.6 already tells us that such a
v(T) is injective, in this section we will show that v(T') is also surjective.

Let 7" he an arbitrary k-algebra. T show that o(T) is suriective, we will first
construct locally free sheaf on Proj(Q 4 ) which is in some sense a universal sheaf
of our PGLn-quatient scheme. Qur starting point is an analogy to the argument
given on pages 861- 862 of (8]. For the reader’s convenience, we review Van den
Bergh’s definition of a special sequence.

An (m,n)-special sequence is a sequence of (n — 1) ordered integer pairs
{({a;, B) Geasuchthat 1 <3, <m,)<q,<jforall2<j;<mandj#j
implies (a;, 3,) # (a;,0;). When m and n are understood, we will just call M
a special sequence.

For each special sequence M = {(qa;, B;)}7=9, we inductively define a sequence

of monormials HfM), L HM € RE, by letting H{M) = land H](M) = Vg, Ht(,ljw)
for 2 < j <n. Let hay = [H(™,... H{™). Now, for cach 1 < j < n let agM) =
7(H;™)) and define g = [a}"",... 0l € Q. Let Vis = Spect(@a n)tou)

for each special sequence M.

LEMMA 3.1:  The set of subschemes {Vy|M is special} of Proj(QQ 4.,) forms an
open affine covering of Proj(Qa »)-

Proof: This follows directly from [4, 1.1.7) and (8, Lemma 1.6]. (]

Let =: RF;, — A be an R-algebra surjection. For each special sequence M
we can define the analogy to the coordinate functions given in Equation (3) on
p. 861 of [8]. So foreach 1 <4,5 < n, 1 <l<mlet

(M) (M (M)
tz]!_[H ) Ht 1>

YeHM B, HOD)

and let

M) M) M M M
wlly = magid)(t) = [..,al™) (a0, )
where we use na: S,,, = San to denote the unique surjection such that

PANOT = Mn(nA) O Pmn-
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LemMma 3.2:  Let M be a special sequence. Then R[Vi] = (Qan)((gm)) IS
generated as an R-algebra by the set

War = {w gy 1 < 1,5 <n1<0<m).

Proof: Let Q; be the sub-R-module of Q 4, consisting of the zero element and
all homogencous clements of degree 1in Q4,,. Let ng;,,l = {hg,’\,,1 |h € Q1}. As
Qa.n is generated by ) as an R-algebra, it suffices to show that the R-module
generated by Wy is equal to ng‘;

Clearly 37, ¢ [?ul(][ Q19y, - ‘Therefore we can use |6, Thm. 3.80], for
example, to reduce to the case when R is a local ring with maximal ideal m. We
remark that ng;; is a finitely generated R-module. Let K = R/m and let K
be its algebraic closure. Then it follows as an easy corollary of [8, Thm. 1.9] that

(2 RU’E%Q[}) ®r K = Qigy/ ®r K.
1,5,¢
As K is faithfully flat over K, we get
Ruw M) -1 K= -1 K
Y RwiTigu) O K = Qigy ®r K.
1.7.£
Hence, by Nakayama’s Lemma,
M) - _
(Z wa],ggM1> = ngMl
1,7.¢
so we are done. [ |

For each special sequence, define ¥ar: Sm.n = (Qm,n)((hn)) DY letting ¥p (z; ))

= tfl;l,h" Let Upr = Mno(¥Mm) © pm.n. For any commutative k-algebra T and
any k-algebra homomorphism 7: 5, ,, = T, let

n®id =1nQid: Lmn = Tyt - Yn)

be the induced graded homomorphism. Then for any homogeneous h € ., ,,
17 ® id induces a homomorphism 7jky: (Em n)((h)) = (TW15 -+ 2 Unlh(ngid(h)))-

LEMMA 3.3: Let 7: RF;,, — A be an R-algebra surjection and let 1: Sy —
Sa.n be the unique surjection such that psn, o7 = My(n) 0 pm.n. Then for any
H,,...,H, € RF,, and for any special sequence M,

[T(Hl (Hn)]

[Hy,-.., Hy)(Mn(n (ha)) © Ppm,€1) =
M
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Proof: Let M = {(a,,0;)]2 < j < n} be a special sequence. Then for each
1<4,5<n

(M) o0 g )< hy =

() =L HM Yy B B ) = { 0 is
since H™ = Y5 H. As HI™) = 1, we have U p (H{™))e; = €;. Therefore for
j > 2 we get can use induction to get \I/M(HJ(M))(el) = \IJM(ng)\IJM(Hé‘;\“)el =
U (Vg,)eq, = €;. Hence

tS,ﬁQ(Mn(nmm) hue)
= ol U (HEDVer, Was (Vo) Wag (H ™ er, Oar (H e, ]
= n(hM)[' ey Cio1, ‘I/M(yg)(’],€,+1, .. l
= (hp) (i, jth entry of War(Ve))
= U(hM)(U)M( (e)))
= n(hM)( i,7; gh’ )
= w; )9
[T(H(M)) H(M)]
gum '

In particular, hp(Mn(7h,,)) © Yar,e1) = 1 and so for any Hy,...,H, € RF,,

Hy.... H,
(Hi,...,Hp)(Mp(nny)) o War,e1) = [ lh ]

(Mn(M(hps)) 0 Y M, €1)

But Lemma 3.2 tells us that [Hy, .. .,Hn]h;; € (@m.n)((ry)) can be expressed

in terms of the tf’;’gh_ Hence for any H,,...,H, € RF, the value of

(Hy,... H

5 n](Mn(TI(hM))O‘I’M,el)
M

(M)(Mn(n(hM)) oWps,ep). So the result

is completely determined by the values ¢, ",

follows. [ |

LEMMA 3.4: Let 1: RF,, — A be a surjection and let n: Sy, — San be
the unique homomorphism such that psn, o 7 = Mu(n) 0 pm . Then for any
special sequence M there exists a homomorphism ®p: A — Mp(R[Vp]) such
that ®pr 07 = Mp(nh,,)) 0 Upm.

Proof: Let

dMm: SA,n = (SA,n. ®y Sm.n) —* (SA,n ®y (Zm n)((hM )= (Za ")((QM))
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be the homomorphism induced by tensoring

YM: Smin = (Q@man)thn) € (Emn) (b))
with Sa ., over . Then ¢ 0n = nn,,) © Y. Therefore

Mu(Mhay)) © Ymr = Ma(Nhy)) © Mp(¥M) © pran
= My(¢m) o Mn(n) © prun
= Mp(dm)opanoT.

Let ®p = M,,(¢m) © pa.n. Then ®p has the desired property. |

Note that for any special sequence M the triple

(Alrl((nA)(hM)) oW, e, (R[VM])H)

represents an R[V)-point of Bsev, (RF,, R). Indeed, since hyy evaluated at this
triple is necessarily 1, the set

{Ma((14) (ha)) ¥ (HM Ve, ooy Mo (1) (hag)) ¥ (HEM)er }

forms an R[Vp]-basis of (R[Vm])®. Therefore, by Lemma 3.4, the triple
(®arr,e1, (R[VM])™) represents an R[Vjs]-point of Bsev, (A, R).

Let M and M’ be any two special sequences, and let Ay a: R[VpMm]| =
(Qan) g = (Qan)((gmgy.)) Pe the canonical homomorphism. Then by
Lemma 3.3 for any a;,...,a, € A we get

(a1, .. an)(My(Amm)®um,e1) = (har/hm)an, - an)(Mun(Amr ) Prr, €1).

Therefore, by Theorem 1.6, there exists a Yy M € GLa((QAn)((grgy,0))) SUCh
that

e m (Ma(Am ) ®Puse1) = (Mu(Anme o m)Pur e1).

Now we can use [2, Exer. I11.1.22], for example, to glue these triples into a triple
(®, 0, L) such that L is a locally free sheaf of rank n on Proj(Qa4..), ® is a global
section of the sheaf of homomorphisms Hom{A, End(£(_)), and ¢ is a global
section of L.

PROPOSITION 3.5: Let T be a commutative k-algebra. Then for every point
p: Spec(T) — Proj(Qa.n) the triple (p*®,p*c,I'(p* L)) represents a T-point of
Bsev,(A, R). (Here we use I'(_) to denote the global section of a sheaf.)
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Proof: First note since £ is a locally free sheaf of rank n on Proj(Q,,) that
p*L is locally free of rank n on Spec(7). Furthermore, by Lemma 3.2, for any
open subscheme V' of Proj(Qa ), £(V) is finitely generated as an Og, ,(V)-
module, where Og, . denotes the structure sheaf of Proj(Qa.). So I'(p*L) is
finitely generated as a T-module. Therefore ['(p* L) is a projective T-module of
constant rank n. Also p*c € ['(p* £) by definition. Finally, we need to show that,
p*®(A)T(p*0) = ['(p*L).

By [6, Thm. 3.80], for example, we can assume T is a local R-algebra. There-
fore by Lemma 3.1 there exists a special sequence M such that gy (p*®,p*o) is a
unit in 7. Hence the set {p"fl)(a(lM))p‘o, . ,p‘d)(aslM))p‘a} defines a T-basis of
I'(p* L£). Therefore the triple (p*®,p* o, T'(p* L)) defines a T-point of Bsev,,(A, R).
1

THEOREM 3.6: For any commutative k-algebra T the map v(T) is a surjection.
Therefore the morphism v: Bsev,(A, R) = Proj(Qa ) is an isomorphism.

Proof: For any commutative k-algebra T, Theorem 1.6 implies v(T) is injective.
Therefore if we show v(T) is also surjective we can define an inverse morphism
v~! to v by letting v(T) = v(T)~! for every commutative k-algebra T (e.g.,
(3, Exercise X.1.6}).

Let T" be an arbitrary commutative k-algebra and let p: Spec(T) = Proj(Q »)
be a T-point of Proj(Qan). Then, by Proposition 3.5, the triple
(p*®,p" 0. T'(p* L)) represents a T-point. g of Bsev,{A, R). Therefore, by showing
v(T)(q) = p we prove the theorem.

Let A C T be such that the set {Spec(T,,)|w € A} is an open cover of Spec(T’),
for every w € A, I’, = P®rT, is a free Ty,-module, and Spec(T,,) is a subscheme
of p~!(Var) for some special sequence M. Let T’ = [] ., Tw- Then T is a
faithfully flat T-algebra and P ®1 T' is a free T'-module. Let j: Spec(T”) —
Spec(T) be the morphism defined by the diagonal homomorphism T' — T’ given
by t = [,ea tw. So by showing v(T)(g) o j = po j, we see that v(T)(q) and p
agree locally, hence are equal as required.

Since P ®7r T’ is a free T'-module, v(T){q) o j is defined by the evaluation
homomorphism €: Q 4., = T’ determined by

(lar,---,an]) = lar,...,aa]((po )P, (o) o, T((poj) L)
= HweA[al,...,an]((poiw)'@,(pOiw)'O',F((poiw)'ﬁ)

for any a;,...,a, € A where i,,: Spec(Ty,) — Spec(T") denotes the canonical
embedding.
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Choose w € A and let M be a special sequence such that Spec(7,) is a sub-
scheme of p~!(Vy). Let py,: Spec(Ty) — Vu be the morphism induced by p,
let a: R[Vm] -+ T, be the co-morphism of py,, and let &,: R{Vy] — T, be
the homomorphism induced from £. If ip: Vyr = Proj(Qan) is the canonical
embedding, then ip o p,, = poiy. So for any a,...,a, € A,

(a1, .. anlgr )= ([a1,- -, aalgp N (P o iw) @, (PO 1y) 0, T((p 0 1w)" L))

(a1, -+, 8n)g37 ) ((ir © Puw)"®, (im0 Pw) 0, T((inr © puw)* L))
(la1- - @n)ga ) (Mn(aw)®rs €1 @ 1, (R[Vy])" ®a,, Tu)

o (({a1 . anlgy ) (@ars €1, (R[Vae))™))

awllar, - anlgy)

where the last equality follows from Lemmas 3.3 and 3.4. Since R[Vy] is
generated by the elements [ay,....a.]gy (by Lemma 3.2), we get that a,, and
&, agree for an arbitrary w € A. Hence we conclude that v(T)(q)oj =poj as
required. ]
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